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NUMERICAL MODELING OF MACH REFLECTION FOR SOLITARY WAVES 

O. A. Serebrennikova and A. M. Frank UDC 532.59 

It is well known that when a surface solitary wave is incident on a vertical wall, 
located under an angle to the wave front, one can have either regular reflection, when only 
two waves are observed - the incident and the reflected, with their angles and amplitudes 
coinciding, or Mach reflection, when a ternary nonsymmetric configuration is generated. The 
studies [1-5] are devoted to investigating this phenomenon. 

Perroud (see [3, 6]) has conducted experiments on wave reflection of dimensionless 
amplitude a = 0.08-0.38 in a wide range of incidence angles. Perroud observed that regular 
reflection is always realized for incidence angles ~im 45 ~ , while Mach reflection occurs for 
~ 45 ~ . Quantitative characteristics of amplitudes and phases were also determined for wave 
reflection and Mach steps. According to Perroud's data, these parameters depend on the wave 
angle of incidence on the wall and are practically independent of its amplitude. 

For low amplitude waves there exist theoretical results [2] on the resonance interaction 
of three solitary waves, providing, in particular, for t § ~ the asymptotic solution for Mach 
reflection problems. In that study it was obtained that the critical incidence angle ~, dis- 
tinguishing the two types of reflection, depends on the wave amplitude and equals -3~a. The 
parameters of the ternary configuration also depend not only on the wave angle of incidence, 
but also on is amplitude. The predicted wave amplitude at the wall also differs substantially 
from experiment, reaching 4a in the Miles solution at the critical angle of incidence ~i = 3/-J~. 

In [4] this effect is modeled numerically with the use of approximate long-wave equations 
of low amplitude. The calculations were carried out for a = 0.05 and, on the whole, are in 
fair agreement with the Miles theory. 

Specific experiments were carried out [3] so as to verify the theoretical model [2]. 
The reflection was treated of waves of amplitudes a = 0.1-0.15 for different angles. As a 
result of handling measurement data the author has expressed doubts concerning the validity of 
applying the Miles method to this problem. Thus, it must be recognized that a number of prob- 
lems still remain open in this case. 

In the present study we present results of a numerical investigation of a solitary wave 
reflection from a vertical wall for different amplitudes and angles of incidence. As mathe- 
matical models we use two discrete models of an incompressible fluid. The study substantially 
augments and refines the preliminary results, published in [7], of calculations for this prob- 
lem, where a cruder grid was used and a solution was obtained for relatively small values of 
physical time. 

i. Three-Dimensional Discrete Model. The given model is a generalization of the dis- 
crete model [8] to the three-dimensional case. The three-dimensional problem is considered 
of the interaction of a solitary wave over an even bottom with a rigid vertical wall, placed 
at an angle to the front. The z axis is directed upwards, and z = 0 corresponds to a flat un- 
perturbed free surface. In the region ~ occupied by the fluid one introduces the regular 
grid 

~ h = { r : = ( x ~ , y ~ , z ~ ) [ a = ( i , ~ k ) ,  i = l  . . . . .  M, ] = l  . . . . .  N, k =  1 . . . . .  ~ ,  

Krasnoyarsk. Translated from PrikladnayaMekhanika i Tekhnicheskaya Fizika, No. 5, pp. 
15-24, September-October, 1993. Original article submitted August 24, 1992. 
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In this case k = 1 and k = L correspond, respectively, to nodes located on the bottom and on 
the free surface, and j = 1 corresponds to nodes on the vertical wall. The unit cell is an 
irregular dodecahedron with vertices at grid nodes, whose boundaries form triangles (Fig. 
la). It is easily seen that the unit cells of the grid divide the whole region ~ into ele- 
mentary volumes without cavities and intersections. In this case the free boundary is a 
piecewise-linear surface of triangular elements. 

We assume that on the grid nodes are located material particles, in which is concen- 
trated the whole mass of the medium, while the particle mass with subscript ~ = (i, j, k) is 
determined in the form 

m~=P ~V 

where V~ is the volume of the unit cell with subscript ~; N~ = {(i - Yi, J - Y2, k -Ys)IYs = 
O, i} is the set of subscripts of cells adjacent to it, and p is the fluid density. 

The next step is the formulation of the kinematic restriction on possible particle mo- 
tions, which for a fluid is the incompressibility condition. In the given discretization 
the natural incompressibility condition is the constancy condition of the volumes of all unit 
cells of the grid during the process of particle motions: 

< = ~ = oor~t .  (i. i) 

The unit cell volume V~ is expressed in terms of the vertex coordinates, therefore conditions 
(I.i) are the usual holonomic relations. 

Furthermore, since the gravitational wave problem is being investigated it is necessary 
to somehow introduce the gravity force into the treatment. The simplest method, usually em- 
ployed in Lagrange methods, consists of the gravity force F~, acting on each particle, having 
the form 

F ~  = m ~ g .  (1.2) 

However, t h i s  g r a v i t y  fo rce ,  un l ike  the  continuous case,  i s ,  g e n e r a l l y  speaking,  in d i s -  
agreement with the incompressibility condition (i.I) in the sense that, for example, a "fluid" 
layer of constant depth is found in equilibrium only in the case of a rectangular grid ~h' 
For an arbitrary grid equilibrium breaks down, i.e., the reactive forces (I.i) are incapable 
of compensating the gravity force (1.2) for all particles simultaneously. As applied to the 
equations of hydrodynamics, this situation implies an inconsistency between the pressure 
gradient approximation and the gravitational potential gradient. Therefore, similarly to the 
two-dimensional case [8], in the present study the gravity force is introduced as follows. 
The potential energy of the system of particles is assumed equal to the potential energy of 
a fluid layer with a free boundary: 

n = ~ f f n~dxdy. ( I , 3 )  

Here n is the elevation from the resting level of the piecewise-linear free surface of the 
discrete medium. Clearly, by this definition the potential energy depends only on the coor- 
dinates of the surface particles (the shape of this function is copied explicitly) and the 
potential energy minimum, i.e., stable equilibrium of the layer, is reached at n = 0 for 
any grid. 

Thus, as a model of the original problem one obtains a finite system of material par- 
ticles with kinetic energy 

! 
T= ~mo (ui+s + w$), 
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potential energy (1.3), and holonomous relations (i.I), whose motion is described by the 
classical Lagrange equations. Due to the nonflow condition of particles located at the bot- 
tom and on the wall, unlike particles in the interior they have only two degrees of freedom 
at the bottom and wall planes, respectively. 

Introducing for all particles generalized coordinates qn, coinciding for interior par- 
ticles with Cartesian coordinates, the system Lagrangian can be written in the form 

l 
L = - n + E xo (vo - 

n 

where l~ is a Lagrange multiplier. The Lagrange equations are 

=  xoov  . 
Oq. Oq. ' q" = ~ '  V~ = V~ ( 1 . 4 )  

We note that by the corresponding theorems of classical mechanics the system (1.4) conserves 
the total energy H = T + H = const for any number of degrees of freedom. Moreover, in the 
absence of rigid walls and for g = 0 the system is also subject to conservation laws of mo- 
mentum and angular momentum due to the invariance of relations (I.i) with respect to trans- 
lational shift and rotation. Conservation of the total fluid volume is guaranteed by condi- 
tions (i.i). 

By the method of introducing unit cells, as described above, it is seen that the grid 
nodes are nonuniform. Thus, the bright nodes (Fig. la) change the volume of a single tetra- 
hedron in each unit cell, while the dark ones correspond to four. Therefore, the symmetriza- 
tion condition of incompressibility was used in the calculations - the dark and bright nodes 
change roles at each step in time. 

2. Discrete Model of Shallow Water. This model is a generalization of the one-dimen- 
sional nonlinear-dispersion model of shallow water [9] to the spatial case. Unlike Sec. i, 
here the grid consists of a single layer of unit cells in depth. Each unit cell V~, ~ = 
(i, j) is a combination of two triangular prisms with lateral boundaries perpendicular to the 
bottom (Fig. Ib). The Lagrangian particles, serving simultaneously as unit cell vertices, 
are located only on the free surface. The basic assumption is that the horizontal components 
of the fluid velocity are independent of depth, while due to the continuity equation the 
vertical velocity varies linearly from zero at the bottom to some finite value at the free 
surface. In this case the kinetic energy of the discrete system can be written in the form 

1 + 

where ms = ~ ~ V~, and the factor 1/3 appears due to the integration of the linear term over 
~eNa 

z. The incompressibility condition has the same shape (i.i), though the dependence of V~ on 
the particle coordinates is, naturally, different. The introduction of a potential energy, 
the statement of boundary conditions at the rigid walls, and the symmetrization scheme are 
carried out here in exactly the same way as in Sec. i. The Lagrange equations differ from 
(1.4) only by the presence of the factor 1/3 in #~. For the one-dimensional discrete model 
of shallow water [9] it has been shown that in the case of an even bottom it is a complete 
conservative approximation of the Green-Naghdi equations [i0] in Lagrange coordinates. For 
the two-dimensional model provided here it can be shown that for an even bottom it is a com- 
plete conservative decoupling scheme of the same equations, while the conservation laws are 
satisfied at each half-step. In the following the discrete models of Secs. i, 2 are denoted 
as models 1 and 2. The algorithm of [ii] was used for numerical implementation of these 

models. 

3. Calculation Results. All calculations described below were performed for the fol- 
lowing values of depth H = i, density 0 = i, and acceleration g = I, which is equivalent to 
the introduction of dimensionless variables by means of the scales H, ~, p, in which case 
the Froude number is Fr = i. Both models were first tried on the problem of a soliton travel- 
ing over an even bottom. The calculations have shown that here, as in the first case of dis- 
crete models of lesser dimensionality, solitary waves are realized even on a quite crude 
grid. Due to the conservation properties of the discrete model and of the numerical algorithm 
these waves propagate with constant mean amplitude, energy, and phase velocity: The wave ampli- 
tude was determined by means of quadratic interpolation along three adjacent particles, and 
the mean phase velocity - by the distance traversed by the wave during ~t = 20. For a soliton 
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of amplitude a = 0.2 on a grid with unit cell sizes h I = h 2 = i, h 3 = 0.5 (for model i) and 
for a time step ~ = 0.5 the shape of the steady-state soliton and its mean phase velocity 
differ from the corresponding quantities for a classical Rayleigh soliton by no more than 3 
and 0.1% (for model i), 0.5 and 0.03% (for model 2). The small oscillations in instantaneous 
amplitude and phase velocity values, related to the discrete representation of the wave, do 
not exceed i% and do not have a tendency to increase. In the following calculations the spa- 
tial and temporal step values were selected close to those given above. 

Next we modeled the experiment [3], in which was investigated the initial stage of 
solitary wave reflection from an oblique wall. In the experiment this wall was placed at a 
varying angle to the lateral basin wall at some distance from the wave generator. The x axis 
is directed along the oblique wall, and x = 0 corresponds to the break point. In the numeri- 
cal calculations the experimental scheme was repeated in the parts concerning the basin geom- 
etry (besides the initial portion with the wave generator), the arrangement of detectors of 
the even fluid, and the data analysis. The difference consisted only of the initial wave gen- 
eration, which was here simply assigned at the input portion as initial values from an approx- 
imate solution [12]. The comparison results between the calculated and experimental[ data 
are given below. 

In Fig. 2 is shown the x-dependence of the wave amplitude at the wall aw, relative to the 
incident wave amplitude ai, for a i = 0.i and various incidence angle of the wave *i" In 
Figs. 2-4 the points connected by short dashes are experiment, and the solid and dashed lines 
are models i and 2, Here and later the incidence angle ~i and the reflection angle ~r are 
understood to be the angles between the wave vector of the corresponding wave and the normal 
to the wall. It is seen that the quantitative difference is no more than 7%, though for small 
angles the calculated amplitude values are systematically larger than the experimental values. 
With the purpose of further verification of the calculation accuracy, calculations were per- 
formed by model 2 for ~i = i0 and 35 ~ on twice as small a grid (153 • 53 instead of 77 • 27 
nodes) and twice as small a step in time (~ = 0.25). The dependencies obtained in this case 
differed from the calculations given by less than I%. Figure 3 shows for a i = 0.15 the y- 
dependence of the maximum elevation of the free surface relative to ai, constructed from the 
fixed detectors shown, located on a straight line perpendicular to the wall at x = 16.7. It 
is seen that for ~i = 30 and 35 ~ the agreement between calculation and experiment is very 
good, while for small angles the difference reaches 10%. We note that for small angles the 
experimental profiles have, for some reason, a nonsmooth shape. This was not commented upon 
in [3], though the resolution of detectors exceeded by one order the scale of fluctuation 
data. In Fig. 4 we show characteristic dependencies of the shape generated during reflection 
of the wave configuration. In the calculation, as well as in the experiment, the level de- 
tector garlands were located on a straight line perpendicular to the wall at x = 23~ By 
~, we denote the time difference between the passage of the wave crest through a detector with 
coordinate Yi and a detector at the wall at Y0 = 0. Here, following [3], T, was determined 
by means of the correlation function 

to+T/2 

R i (X) = E ~!~ (0 ~ (t + %), Ri (x.) = m a x  R: (x) ,  
to_T/2 x 
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where q0(t), qi(t) are the recorded levels at the corresponding detectors, t o = arg max t NO(t), 
and the window size is T = 3.65. The experimental points are given for a i = 0.15 for three 
~i values. On the whole it can be stated that the calculation results in both models are 
in satisfactory agreement between them and with the experimental results. 
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The next substantial series of calculations is devoted to studying the time evolution 
of the wave configuration up to the steady state. In this case, as follows from theory [2] 
and from numerical calculations, for regular reflection there exists a truly stationary V- 
shaped configuration, moving along the wall with a constant velocity. For a ternary Mach 
configuration an exception to stationarity occurs only for a reflection angle @r and wave 
amplitudes, and a Mach portion length continuing to increase with time. The detection time 
varies from several dozen dimensionless units for regular reflection to thousands and more 
for a ternary configuration. Therefore, we used in the calculation a moving computational 
region in the form of a parallelogram, which was displaced along the wall immediately behind 
the wave, while the initial data appeared in the form of a solitary wave, incident on the 
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oblique wall. In Fig. 5 we provide an example of the time evolution of a ternary configura- 
tion for a wave with amplitude a i = 0.3 for ~i = 20~ Here the nonflow condition was imposed 
at the wall, on part of the upper boundary was assigned a traveling solitary wave from the 
parallel solution of the problem of one lesser dimensionality, while no further conditions 
were imposed on the remaining boundaries, so that from the point of view of the equations of 
hydrodynamics the boundary corresponds to the given hydrostatic pressure. 

The calculations were carried out on nonuniform grids from 50 x 41 x 3 (model i) to 
131 x 131 (model 2) nodes. Depending on the type of model and on the problem parameters, 
the sizes of the computational region were selected from 48 x 104 to 197 x 220 units. The 
computation time of a single version up to the steady state was from 2 to 20 h on a PC/AT 
386/33. The incident wave amplitude varied from 0.i to 0.3. To compare with the results of 
[4] we also performed two calculations for a i = 0.05. Large amplitudes were not considered, 
since even for a i = 0.3 the amplitude of the Mach portion exceeds substantially the critical 
height for a solitary wave 0.83 for some incidence angles, which must in reality lead to its 
collapse. An accurate calculation of waves with an amplitude less than 0.05 requires a too 
large computational region, also increasing the time of reaching the steady state, so that 
the total computational time increases to impractical values. 

The basic problem in this series is clarifying the dependencies of the wave amplitude 
at the wall aw, the reflected wave amplitude ar, and the reflection angle #r on the incident 
wave amplitude ai and on the angle of incidence ~i- Figure 6 shows the calculated dependence 
of ~r on ~i" For model 1 a i = 0.097, 0.186 (points i, 2), and for model 2 a i = 0.05, 0.097, 
0.186, 0.3 (points 3-6). The points 7 provide the calculation results of [4] for a i = 0.05. 
The dashed lines for each of the a i values considered illustrate the theoretical Miles depen- 
dence [2]: 

{~ for ~ < ~7, 
~r = ~ for ~i~. 

It is seen that for a i = 0.05 the two calculations by model 2, representing both types 
of reflection, are in good agreement with the results of [4] and in fair agreement with the 
Miles theory. At large amplitudes the theory provides an enhanced value of the reflection 
angle, though even for a i = 0.097 the theoretical estimate of the reflection angle is still 
quite valid. A stronger nonlinearity also leads to a characteristic nonmonotonic dependence 
of the reflection angle on the angle of incidence. In this case the curve minima correspond 
to a ternary configuration with a maximum amplitude of the Mach portion (Fig. 7). 

Figure 7 shows the calculated value of the reflected wave amplitude ar and the Mach 
portion at the wall a w, relative to a i, as a function of the variable ~i//3ai. Also given are 
the results of [4] for a i = 0.05 and the theoretical results [2], providing universal depen- 
dencies in these variables (dashed lines). The notations are the same as in Fig. 6. It is 
seen from Fig. 7 that an increase in nonlinearity leads to a substantial quantitative devia- 
tion from the universal Mach dependencies, but the qualitative character still holds. Most 
interesting is here the effect of resonance amplification of wave amplitude at the wall, 
reaching the value of 3.5a i in the calculations. It must be noted that, since the peaks are 
very sharp, it cannot be excluded that not very large values are obtained in the calculations 
for low amplitudes. Nevertheless, the value of 3.5a i substantially exceeds the maximum splash 
value of the wave during ordinary rolling onto the vertical roll at a right angle, which, as 
well known, practically coincides with the result of the linear theory 2a i. In the Perroud 
experiments (see [3, 6]) for ternary configurations the ratio aw/a i did not exceed 2. It 
was noted in [3] that capillary effects, as well as wave collapse, are explicitly present in 
these experiments. Another reason for absence of observations of this effect is, most prob- 
ably, the fact that, judging from the present calculations, a ternary configuration with a 
maximum amplitude of the Mach portion is established further away than for all the remaining 
ones, and, depending on the amplitude, this time consists of 500 and more dimensionless units. 
Following this time the incident wave traverses more than 500 depths, which is hardly possible 
to implement under laboratory conditions. Moreover, in.the given calculations the minimum 
time of reaching the ternary configuration parameters was about 200 for a i = 0.3, ~i = 20~ 
(see Fig. 5), so that obtaining a complete steady-state ternary configuration in a laboratory 
experiment is, obviously, quite problematic. On,the other hand, this relation between scales 
is quite realistic under natural conditions, so that the effect of resonance amplification 
predicted in [2] during wave rolling onto a shore at an angle can even be of practical in- 
terest, such as in, say, tsunami waves. 
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A qualitative distinction between the results given and the asymptotic theory [2] is 
that for increasing angle $i and following the curve peak in Fig. 7 the wave configuration 
may not evolve with time into a ternary configuration, but remains slightly nonsymmetric, 
and transforms to symmetric only with further increase in ~i" As seen from Figs. 6, 7, in 
these cases the reflection angle ~r exceeds @i by (i-2) ~ , while the reflected wave amplitude 
is somewhat smaller than a i- 

The dependence of the reflected wave amplitude a r on the angle of incidence for a ter- 
nary configuration is also qualitatively, and for low amplitudes even quantitatively, close 
to the Miles quadratic dependence a r = ~/3, though with some amplitude-dependent coefficient. 
For ai = 0.3, for example, the calculated points are very well located on the curve a r = 
0.62~. A decrease in the amplitude a r with decreasing ~i was also observed in the Perroud 
experiments. 

Finally, Fig. 8 shows a diagram in the parameter plane ai, ~i, taken from [4] and aug- 
mented with the present calculations. Here the points I, 2 correspond to irregular reflec- 
tion, and 3, 4 to regular reflection (the points i, 3 - [4], the points 2, 4 - present study). 
In the present study reflection was assumed to be irregular if the steady-state value of a r 
was less than 0.95a i. The dashed line is the theoretical curve [2] for the critical angle 
separating the two types of reflection ~ = s . Good agreement with theory is observed for 
amplitudes a i < 0.1. For larger a i the dash-dot curve corresponds better to the calculation 
results. This dependence increases substantially more slowly than the quadratic root, and 
for moderate amplitudes provides a value of the critical angle similar to the experimental 
data of Chen and Perroud given in [6], where the values 40 and 45 ~ , respectively, were ob- 
tained, while the Perroud estimate did not exceed a i. 

The results provided of numerical experiments, along with verifying the existence of 
ternary configurations in the case of substantially nonlinear equations, as well as the ex- 
planation of some quantitative dependencies, are, it seems to us, further arguments concern- 
ing the validity of the linear theory [2] in describing Mach reflection of solitary waves 
at low amplitudes. Doubts concerning this fact were expressed, in particular, in [3]. The 
main argument is absence in the experiments of resonance amplification of wave amplitudes at 
the wall. Fair agreement ~ith the experimental results [3] has been obtained in the present 
study. As seen from Fig. 2, the dependence of a w on ~i for fixed x values in the calcula- 
tions is also monotonically increasing; however, as follows from the calculations results, 
this only implies shortness of the times considered. Resonance amplification occurs sub- 
stantially later, and the size of the experimental basin must be increased by an order of 
magnitude so as to observe it. 

i. 
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NUMERICAL STUDY OF THE ACTION OF A SHOCK WAVE ON AN OBSTACLE SCREENED 

BY A LAYER OF POROUS POWDER MATERIAL 

A. G. Kutushev and D. A. Rudakov UDC 532.529:518.5 

Currently for a number of branches of modern technology there is a very important prob- 
lem of mathematical modeling for the process of shock wave operation on an obstacle shielded 
by a layer of loose material. In particular the requirement of solving this problem is en- 
countered in pneumatic transport of loose materials with creation of a system for explosion 
protection of trunk lines, in powder technologies, in explosive processing of materials, and 
in safety techniques with analysis of the efficiency of protecting units screened by free- 
flowing layers. 

The problem of studying the effect of porous shields on the reaction of shock waves with 
a rigid surface has been considered in [1-4] where it is shown that the maximum pressure 
amplitude at an obstacle shielded by layer of porous material may exceed considerably the 
pressure of a normal reflected shock wave from the wall of an obstacle in the absence of a 
porous layer. In [i, 2] in order to explain the behavior of the shielding layers of porous 
shields of the polyurethane type (solid porous coating with a porosity of ~97%) with passage 
through the layer of shock waves with Mach number ~2 a very simple model of an effective gas 
is used. In [3] the effect is studied of a layer of polyurethane foam on the maximum excess 
pressure behind the shock wave reflected from the wall using in contrast to [i, 2] models 
describing shield porosity: a shielding porous layer is represented by an equivalent mechani- 
cal system with one degree of freedom from a load of mass m and a combination of ideally 
plastic and elastic elements. Results are given in [4] for an experimental study of the 
parameters of shock waves reflected from a solid wall coated by a layer of porous loose ma- 
terial. A similar model of a porous specimen is used in order to describe the behavior of 
the pressure amplitude at an obstacle. 

A detailed analysis is Provided in this work for the process of shielding an obstacle by 
a layer of loose material within the scope of a twolphase model of powder material. 

i. Basic Equations. In order to describe movement of a gas and porous powder material 
represented by a mixture of solid particles in contact with each other and gas in pores 
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